Self-Organizing Topology Evolution of Turing Neural Networks
نویسندگان
چکیده
We present Turing's neural-network-like structures (unorganized machines) and compare them to Kau man's random boolean networks (RBN). Some characteristics of attractors are brie y presented. We then apply a self-organizing topology evolving algorithm to Turing's networks and show that the network evolves towards an average connectivity of KC = 2 for large systems (N !1).
منابع مشابه
Optimizing the Topology of Complex Neural Networks
In this paper, we study instances of complex neural networks, i.e. neural networks with complex topologies. We use Self-Organizing Map neural networks whose neighborhood relationships are defined by a complex network, to classify handwritten digits. We show that topology has a small impact on performance and robustness to neuron failures, at least at long learning times. Performance may however...
متن کاملOptimising the topology of complex neural networks
In this paper, we study instances of complex neural networks, i.e. neural networks with complex topologies. We use Self-Organizing Map neural networks whose neighbourhood relationships are defined by a complex network, to classify handwritten digits. We show that topology has a small impact on performance and robustness to neuron failures, at least at long learning times. Performance may howeve...
متن کاملA Topology Preserving Neural Network for Nonstationary Distributions
We propose a learning algorithm for selforganizing neural networks to form a topology preserving map from an input manifold whose topology may dynamically change. Experimental results show that the network using the proposed algorithm can rapidly adjust itself to represent the topology of nonstationary input distributions. key words: competitive Hebbian learning rule, law of the jungle mechanis...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل